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Abstract—A quasi-analytical method for calculating the ex-
citation of leaky modes on multilayer stripline structures by a
finite source is presented in this paper. Simple sources such as an
infinitesimal dipole near the conducting strip or a delta–gap feed
on the conducting strip of the transmission line are considered.
The method uses a numerically constructed Green’s function
for the source in the presence of the conducting strip, which
is calculated from Fourier transform theory in terms of a one-
dimensional Green’s function for a line source in the presence
of the conducting strip. The numerical Green’s function involves
a one-dimensional integration in the longitudinal wavenumber
plane. The residue contributions from the poles of the Green’s
function define the excitation amplitudes of the leaky and bound
modes that exist on the structure. The numerical Green’s function
is also used to numerically calculate the complete current on
the strip excited by the source. The correlation between the
leaky-mode current and the complete current is used to define
the extent of the physical meaning of the leaky mode. The
generalized pencil of functions (GPOF) method is used to study
this correlation by resolving the complete current on the strip into
exponential waves, which are then compared with the current of
the leaky mode. The physical meaning of the leaky modes is also
analytically examined by consideration of the branch cuts in the
longitudinal wavenumber plane for the numerical Green’s func-
tion integration. A “path consistency condition” is established as
a necessary condition for the physical meaning of the leaky mode.

Index Terms—Leaky waves, microwave integrated circuits, pla-
nar transmission lines, planar waveguides, stripline, transmission
lines, waveguide excitation.

I. INTRODUCTION

T HE existence of leaky modes on printed-circuit transmis-
sion lines has recently been the subject of considerable

interest [1]–[10]. These modes are usually undesirable since
they result in increased attenuation of the signal, and may
result in crosstalk with adjacent circuit components and other
spurious effects, including interference with bound modes that
also propagate on the line [3]. Of particular interest is the
existence of leakydominantmodes on the structure [1]–[5].
A dominant leaky mode (as opposed to a leakyhigher order
mode, investigated in [6] and [7]) is one that has a current

Manuscript received September 16, 1996; revised May 11, 1998. The work
of F. Mesa was supported by NATO and by CICYT, Spain, under Project
TIC95-0447. The work of D. R. Jackson was supported by the U.S. Army
Research Office under Contract DAAL03-91-G-0115, and by the State of
Texas Advanced Research Program under Contract 003 652-081.

C. Di Nallo is with the Department of Electronic Engineering, “La
Sapienza,” University of Rome, 00184 Rome, Italy.

F. Mesa is with the Microwave Group, Department of Electronics and
Electromagnetism, University of Seville, 41012 Seville, Spain.

D. R. Jackson is with the Department of Electrical and Computer
Engineering, University of Houston, Houston, TX 77204-4793 USA.

Publisher Item Identifier S 0018-9480(98)05515-X.

Fig. 1. Two-layered stripline structure.

distribution on the conducting strip that closely resembles
that of a quasi-TEM mode of propagation. Therefore, such
a leaky mode will typically be excited quite strongly by
a customary feed. Leaky dominant modes have been found
on multilayer stripline structures [2]–[5], coplanar waveguide
and slotline [8], coplanar strips [9], microstrip lines with an
anisotropic substrate [10], and recently on microstrip lines with
an isotropic substrate [11].

Although the propagation properties of leaky modes on
printed-circuit lines have been studied quite thoroughly in
recent years, much less attention has been devoted to the
interesting and practical issue of excitation of these modes
by a practical source of finite size, such as a delta–gap feed
on the conducting strip or a probe feed. The issue of excitation
by a finite-size feed is an important one since it can be used to
definethe degree of physical meaning of the leaky mode [12].
In this paper, theexcitationof leaky modes on printed-circuit
lines by afinite sourceis investigated. Although the method
is general, results will be presented for the two-layer stripline
structure shown in Fig. 1. One advantage of this structure is
that it allows considerable flexibility in controlling the phase
constants of the leaky, bound, and parallel-plate modes, by
selection of the dimensions and primittivities. The source may
consist of an infinitesimal dipole located in proximity to the
conducting strip or a delta–gap feed located on the strip.

The physical meaning of a leaky mode is defined here by
the degree to which the fields of the leaky mode resemble
the completefields existing on the structure when excited by
the finite source.Since the leaky mode is improper, the actual
fields will not agree with the leaky-mode fields everywhere in
space (this is well-known [13]). However, if the leaky mode
is physically meaningful, the leaky-mode fields are expected
to agree well with the actual fields within a limited angular
region of space determined by the leakage angle [13], [14].
This angular region of space always includes the interface
between the leaky structure and the exterior region into which
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radiation occurs. In particular, for a leaky printed-circuit line,
the angular region of validity always includes the printed line
itself. Therefore, if a leaky mode on a printed-circuit line
is physically meaningful, the current of the leaky mode on
the conducting strip that is excited by the source would be
expected to agree well with thecompletestrip current due
to the source excitation (agreement both in amplitude and
phase). Therefore, wedefinethe degree of physical meaning
of a leaky mode on a printed-circuit line by the degree to
which the strip current of the leaky mode agrees with the
complete strip current. The excitation of the current on the
conducting strip by a finite source thus provides a convenient
way to investigate the physical meaning of a leaky mode on
a printed-line structure.

In this paper, the calculation of the strip current due to the
finite source excitation is performed by constructing a numer-
ical Green’s function, which gives the current induced on an
infinite strip conductor due to thefinite source. The calculated
strip current (referred to here as the “complete” current) is
numerically exact, under the assumption that the strip width is
small (since a fixed transverse dependence of the longitudinal
current is assumed, and the transverse current is neglected).
The numerical Green’s function is obtained by Fourier trans-
forming which is transforming the source in the longitudinal

-direction. Thus, the problem is essentially reduced to
one of calculating the strip current due to an infinite set
of phased-line source excitations (aone-dimensionalGreen’s
function problem). The one-dimensional Green’s function is
in turn calculated from a spectral integration in the transverse
wavenumber plane, which is the same type of integration
used to solve for the modal solutions on the guiding structure
[15]–[19]. One of the properties of the integration is that
different choices are possible for the path of integration [2].
A real-axis path defines a modal solution that is bound in the
transverse directions, while a path that detours around
the poles of the background structure results in a solution that
is improper in the transverse directions. It is shown here that
the different choices of path in the transverse wavenumber
plane give rise tobranch cutsin the longitudinal wavenumber
plane for the integration in that determines the numerical
Green’s function. A careful consideration of these branch cuts
provides much insight into the physical meaning of the leaky
modes that are excited by the source, corresponding to the
poles in the plane.

The complete current is compared to the current of the
leaky mode alone, defined from the residue contribution of the
leaky-wave pole in the integration of the numerical Green’s
function. The degree of physical meaning for the leaky mode
is defined by the correlation between the complete and leaky-
mode currents. The generalized pencil of functions (GPOF)
method [20]–[25], which resolves the complete current into
a set of exponential waves, is used to help quantify the
correlation.

II. A NALYSIS

A. Formulation for Strip Current

Fig. 2 shows two possible excitations for a multilayer
stripline structure: a unit-strength vertical electric dipole

Fig. 2. VED and delta–gap excitations for the two-layered stripline.

(VED) and a delta–gap feed. The VED serves as a model for
a probe feed. The conducting strip is assumed to be infinite
in the directions, and is perfectly conducting. Another
assumption is that the strip width is sufficiently small that the
transverse -directed) current may be neglected. The VED
source is considered first.

The vertical dipole is represented as a planar sheet of
vertical current at , having the form

(1)

For the dipole, and , but
the present derivation is general. The current source is then
represented as

(2)

This equation decomposes the original source into an infinite
set of phased-line source currents, each having the form

(3)

where

The field at (the location of the strip) from an arbitrary
planar sheet of vertical current at can be written as

(4)

where is the spectral Green’s function for
the field due to a vertical dipole at [the notation
is used to avoid confusion with appearing in (3)]. Applying
(4) to the phased-line current in (3), and using the Fourier
integral representation of the delta function gives the field
from the phased-line source as

(5)

This field from each phased-line current acts as an incident
field that induces a phased current on the strip, having the form

(6)
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where is an amplitude function that depends on, and
the transverse current function is taken as

(7)

where . The same transverse current
dependence is assumed for all (valid for a narrow strip).
Similar to (5), the field due to the phased strip current in (6) is

(8)

where

(9)

with the zeroth-order Bessel function and
. The electric-field integral equation (EFIE) states that

the field due to the strip current in (8) must cancel the field due
to the line source in (5). The EFIE is enforced by multiplying
both sides of the resulting equation by and integrating
over the strip width (Galerkin testing). The resulting equation
yields the solution for the amplitude function as

(10)

where

(11)

The complete current induced on the conducting strip due
to the VED source is then

(12)

For the particular case of the VED source ,
(12) reduces to

(13)

Equation (13) is the numerical Green’s function for the exact
current on the strip due to the VED. The function is
given by (11) with .

The analysis for the case of a-directed horizontal electric
dipole (HED) source is very similar to that for the VED,
and is omitted. The final result is the same as (11) with

replaced with .
The function has poles in the plane at the values

of the propagation constants of the guided modes on the
structure, either for the bound mode or for a leaky
mode. This is because the denominator in (11) is precisely the
same integral that appears in the solution of the propagation
constant for the guided mode on the structure. The residue

contribution to the integral (13) at a pole gives, by definition,
the current amplitude of the guided mode (either bound or
leaky) and defines the excitation coefficient of the guided
mode.

For the delta–gap feed, the analysis is somewhat different
because the source is an impressed electric field on the surface
of the conducting strip (the delta–gap field). The impressed
electric field is represented as

(14)

The function is taken as unity over the width of
the strip. The longitudinal gap function is for
an idealized delta–gap feed. However, in order to make the
transform converge faster, is taken as

(15)

where is an effective gap width. This function has the
transform

(16)

The impressed electric field on the strip is then represented
as

(17)

which is a collection of phased sources of the form

(18)

where

The current on the strip is represented as a collection of
phased currents, as shown in (6), each producing the field
shown in (8). The field in (8) produced by the phased current is
equated with that of (18), and the resulting equation is enforced
by integrating over the strip width after multiplying by .
This results in

(19)

where

(20)

Using (7), and recalling that for the delta–gap
case, the integral in the numerator of (20) is unity. Hence,

(21)

The total current on the strip is then

(22)

Equation (22) is the numerical Green’s function for the
current on the strip when excited by a delta–gap feed.
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Fig. 3. Two possible paths of integration in thekx plane. The real-axis path
yields the bound-mode solution, while the path that detours around the poles
yields the leaky-mode solution.

B. Discussion of Integration Paths

An important consideration in the evaluation of the numer-
ical Green’s function is the choice of path in the plane
for the evaluation of the function in (11) or
in (21). There are poles in the plane corresponding to the
parallel-plate modes of the background structure, located at

(23)

where is the propagation wavenumber of a parallel-plate
mode. In most practical cases, only the fundamental
mode is above cutoff. The path of integration in
the plane may or may not either be chosen to detour around
the poles. For example, if is chosen in the fourth quadrant
of the complex plane, the poles in the plane will be in the
first and third quadrants, as shown in Fig. 3 (illustrated for
a single pair of poles corresponding to ). There
are two possible paths shown: the real axis path (which will
yield a bound solution) and the one that detours around the
poles (which will yield an improper solution). Therefore, the
function (which denotes either or ) is a
multivalued function, which implies the existence of branch
cuts in the plane in order to restrict the function
to being single valued. These branch cuts play a crucial role
in providing insight into the physical meaning of the leaky
modes excited on the structure.

To examine the nature of the branch cuts and establish where
the branch points are, it is helpful to note that (23) maps
the real axis of the plane to that part of the axes in the

plane labeled in Fig. 4(a) (solid line). The imaginary
axis in the plane is mapped to the part of the real axis
in the plane that is labeled I (dashed line). The origin of
the plane is mapped to the point in the plane.
As a point in the plane moves around the point ,
the poles in the plane cross the real axis and then the
imaginary axis to return to their original positions. This is
illustrated in Fig. 4(b)–(d), which shows the pole locations
corresponding to the points labeled 1–3 in Fig. 4(a). Note that
the path of integration is continuously deformed as the poles
move, so that the integration is a continuous function of.
At point 3, one complete trip around the point has been
made. The path in the plane has changed from the real axis
(point 1) to a path that detours around the poles (the path that
is used to obtain the leaky-mode solutions). This demonstrates
that the point is a branch point in the plane. The

same conclusion holds for the point . Fig. 4(e) and
(f) correspond to points 4 and 5 in Fig. 4(a), and shows the
evolution of the path as the point in the plane circles the
branch point at once again. As the point ends up at the
starting position (point 5), the path in Fig. 4(f) detours around
each pole in the plane twice in opposite directions. This
is equivalent to the real-axis path of Fig. 4(b). Hence, it is
concluded that the branch cut corresponds to atwo-sheeted
Riemann surface (as does a square-root type of branch point).

The important observation thatpoles of the background
structure give rise to branch points in the longitudinal
wavenumber plane, which is key to the discussion below on
the physical meaning of the leaky modes, was recognized orig-
inally by Mesa and Marqúes [19] and by Nyquist and Infante
[26]. The proof given here, based on considerations of the path
of integration in the plane, provides additional insights and
complements the discussions given in [19] and [26].

Branch points will occur in the plane at all points
. In most cases, only one mode , or at most

two and , are above cutoff. All of the modes below
cutoff correspond to branch points on the imaginary axis of
the plane (the propagation constant of a parallel-plate mode
below cutoff is purely imaginary). Accounting for all possible
modes, there are an infinite number of sheets, two from each
branch point. To completely specify where a point in the
plane is, it is necessary to indicate which sheet (top or bottom)
the point is on for each of the branch points. Fortunately, only
a few of the possible combinations correspond to physically
meaningful leaky-mode pole locations, as will be explained
shortly.

The exact shape of thebranch cutsis arbitrary. However,
a convenient choice is the Sommerfeld branch cut, in analogy
with the same shape of branch cut that is commonly used
when dealing with the wavenumber mapping shown in (23).
The Sommerfeld choice of branch cuts is shown in Fig. 5(a)
for the case of one mode above cutoff, and in Fig. 5(b) for
the case of two modes above cutoff. Also shown in these
figures are the poles corresponding to the bound and leaky

modes that can propagate on the stripline structure. A
convenient property of the Sommerfeld branch cut is that all
points on one of the sheets (denoted as the top sheet) of the
plane correspond to paths in the plane that do not detour
around the poles in the plane—that is, the path is thereal
axis.Points on thebottom sheetcorrespond to paths thatdetour
around the polesin the plane (such a path is equivalent
to the real axis path plus the residue contribution from the
captured poles). This is in analogy with the usual property of
the Sommerfeld branch cuts for radiation problems, where the
top sheet is “proper” and the bottom sheet is “improper.”

The branch cuts in the plane provide insight into the
physical meaning of a leaky mode that is excited by the source.
The path of integration in the plane in (13) or (22) is along
the real axis, except that the path detours around the bound-
mode poles that lie on the real axis (above the pole on the
positive real axis, below the one on the negative real axis).
The path stays on the top sheet of all branch points. (This path
results in a total field that is bounded in space, which must be
the case for the field from a finite-source excitation). If a leaky-
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) Thekz plane, showing the mapping of the realkx axis as a solid line(R) and the imaginarykx axis as a dashed line(I). The lineR is the
entire imaginary axis of thekz plane, whileI is the real axis with the part between the branch points excluded. Also shown is a path that encircles the point
kTM0 twice, with various positions labeled. (b)–(f) Show paths in thekx plane, corresponding to the various values ofkz labeled in part (a).

(a)

(b)

Fig. 5. (a) Sommerfeld branch cuts when only one mode(TM0) is above
cutoff. (b) Sommerfeld branch cuts when two modes(TM0 andTE1) are
above cutoff.

mode pole is close to the integration path in theplane, and
the residue of the pole is not too small, then the pole will make
a strong contribution to the path integration. This contribution
will result in a strip current that closely resembles the current
of the leaky mode, i.e., the contribution from the residue of the
leaky-wave pole . If the pole is further from the path, its
contribution will be blurred out, and the integrand will not have

Fig. 6. Thekz plane when two modes(TM0 andTE1) are above cutoff,
showing various possible pole locations.

a sharply peaked well-defined component; consequently, the
field calculated from the path of integration will not resemble
that of the leaky mode alone. Therefore, anecessarycondition
for the leaky mode to have strong physical meaning is that the
leaky-mode pole be close to the path of integration.

An important point of discussion is the word “close.” Here,
the term “close” means close in theRiemann surfacesense,
not in the geometrical sense. To illustrate this, consider several
possible pole locations in the plane of Fig. 5(b), shown in
Fig. 6 as points , , , and (only poles in the right half
of the complex plane are shown for simplicity). Point is
assumed to be on the top sheet of all branch points. Point
corresponds to the location of the bound-mode pole, which is
on the real axis and has while points , , and

are possible locations of a leaky-mode pole. Clearly, point
is close to the path (and this agrees with the well-known

fact that the bound mode is always physically meaningful).
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Point has but is assumed to reside on the
bottom sheet of the branch point, and the top sheet of
all others (point would correspond to the path shown in
Fig. 3, which detours around the parallel-plate poles).
Since point is on the opposite sheet to the one the path is on,
it is “far” from the path, even though it may have coordinates

, that aregeometricallyclose to the path. Point
has , and is on the bottom sheet of the

branch point and the top sheet of all others. This point is
close to the path since the path is reached by smoothly moving
upward from the point on the Riemann surface, passing from
the bottom sheet to the top sheet while continuously changing
the value of the function. A point at position, but on the top
sheet of the branch point, would be far from the path
in the Riemann sense.

Point has and is located on the bottom sheet
of both the and branch points. This point is also
close to the path since the path is reached by smoothly crossing
both branch cuts (moving continuously on the Riemann surface
to the sheet that is proper for all branch points).

For a leaky-mode pole at points or , any other location
on different sheets other than those mentioned above would
not be close to the path. A concise way to summarize this
necessary condition for physical meaning is that provided by
the “path consistency condition.” This condition was discussed
in [2] (where it was termed the “condition of leakage”) as a
speculative criterion for when leaky modes may be physically
meaningful. It relates to the choice of path shown in Fig. 3.
This criterion states that in order for a leaky mode to have well-
established physical meaning, the value of the phase constant

must beconsistentwith the choice of path used
to obtain the leaky mode. The word “consistent” means that
the path must detour around (capture the residues from) only
those poles for which and no others. (Of course, the
value of the propagation constant is not known until after the
numerical solution is obtained. The numerical solution used to
obtain the propagation constant involves the path of integration
in the plane and, hence, it is not usually known if the
solution will be consistent with the path in advance.) This
speculative condition was discussed in [2] by using physical
reasoning (without mathematical justification). Physically, if
a leaky mode has for a certain parallel-plate mode,
conventional reasoning dictates that the leaky mode should not
radiate into this parallel-plate mode. This physical reasoning is
discussed in [1]. It is seen that the “path consistency condition”
is precisely the same condition as requires the leaky-mode pole
to be close to the path of integration in the Riemann sense. For
example, if (point in Fig. 6), the pole
is close to the path if it is on the bottom sheet of only the
branch point, and not the branch point. This corresponds
to a path of integration in the plane that detours around
only the poles, not the poles.

Although the previous conclusions have been illustrated for
the case of one or two parallel-plate modes above cutoff,
the preceding argument can easily be generalized to any
number of modes above cutoff. The conclusion is that the
path consistency condition is a necessary condition for a leaky
mode to have well-established physical meaning.

III. RESULTS

In this section, the complete current on the conducting strip
is compared with the current of the leaky mode in order to
illustrate the determination of physical meaning of the leaky
mode. The complete current on the strip is calculated from (13)
for the VED or (22) for the delta–gap source (which assumes
a single basis function of current for the transverse variation).
The current of the leaky mode is obtained by calculating the
residue contribution from the corresponding integrals, which
defines the excitation coefficient of the leaky mode. (The
excitation coefficient of the bound mode is also calculated in
this way, although the focus of the results will be on the leaky
mode). Results have also been obtained using multiple basis
functions for the longitudinal current and using basis functions
for the transverse (-directed) current. These results have only
shown very small differences with the results obtained using a
single basis function, since the strip width is small compared
to a wavelength for all of the results shown here.

To help quantify the comparison, the GPOF method
[20]–[25] is used to approximate the complete strip current
with a set of exponential waves. The development of the
GPOF method [20] and its recent application to printed-
circuit structures by Sarkaret al. [25] provides an effective
tool for the characterization of the current on a printed-circuit
line. In this study, the amplitude and propagation constants of
the GPOF approximation are compared with the theoretical
amplitudes (excitation coefficients) and propagation constants
of the bound and leaky modes, and this comparison is used to
explore the physical meaning of the leaky modes.

The dispersion curves showing the normalized phase con-
stants for the bound, leaky, and modes of the two-layered
structure in Fig. 1 are shown in Fig. 7(a). Fig. 7(b) shows
the normalized attenuation constant of the leaky mode. The
structure has been designed with a wide strip and with the
permittivity of the bottom layer much larger than that of the
top layer (which is air). This results in a large separation
between the dispersion curves for the three different solutions
in Fig. 7(a), which makes the results easier to interpret. The
“spectral gap” [27] begins at about 1.25 GHz. Below this
frequency, and the leaky-mode solution thus
violates the “path consistency condition,” which means that
it is not expected to have much physical meaning. Below
0.5 GHz, the leaky solution does not exist and, instead, a pair
of improper real solutions are found [3], [5]. These improper
real solutions have no physical significance and are not shown
in Fig. 7(a).

Tables I and II first present results for the structure in
Fig. 7 to verify the convergence of the GPOF method as the
number of sample points, length of the sampling interval, and
precision parameter are varied. (The precision parameter is a
negative integer that determines the degree of fitting.
The GPOF routine picks the number of exponential waves to
obtain a fitting that is, roughly speaking, accurate to 10
[20].) For these tables, a delta–gap feed is used, and the
frequency is 10 GHz. The theoretical excitation coefficients
and propagation wavenumbers of the bound and leaky modes,
as well as the propagation wavenumber of the mode, are
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(a)

(b)

Fig. 7. (a) Dispersion plot showing the wavenumbers of the bound and leaky
modes for the structure of Fig. 1. Also shown is the dispersion curve for the
propagation wavenumber of theTM0 parallel-plate mode. (b) The attenuation
(leakage) constant for the leaky mode."r1 = 10:0; "r2 = 1:0; h1 = 1:0 mm,
h2 = 0:5 mm, w = 10:0 mm.

shown in Table I. The amplitude and propagation constants of
the GPOF waves are shown in Table II for various number
of sampling points (the number of waves varies with the
parameter , as this is picked by the routine). The sampling
region starts at in all cases to avoid sampling
too near the source (since the near-field current is not well
approximated by only the bound and leaky modes).

Comparing Tables I and II, it is seen that the agreement
between the first two GPOF waves and the bound- and leaky-
mode current waves is always good, but improves as the
number of sampling points, upper limit of the sampling interval

, and precision increase. For 1000 sampling points and
, the agreement is excellent.

One interesting point in connection with Table II is the
clear indication of a “residual wave” current on the strip.
By definition, the residual wave is the difference between
the complete (total) strip current and the current due to the
leaky and bound modes. It is that part of the continuous
spectrum current (complete current minus the current of the
bound mode) that is not well approximated by the leaky-mode
current. The continuous spectrum current is represented by
an integral around the branch cuts in Fig. 5. Asymptotically,
for large , the continuous-spectrum current is dominated

TABLE I
THEORETICAL PROPAGATION CONSTANTS AND AMPLITUDES (REAL, IMAGINARY )

FOR A DELTA–GAP SOURCE AT10 GHz. THE STRUCTURE IS THESAME AS IN FIG. 7

TABLE II
PROPAGATION CONSTANTS AND AMPLITUDES (REAL, IMAGINARY )

FROM THE GPOF METHOD FOR A DELTA–GAP SOURCE AT

10 GHz. THE STRUCTURE IS THE SAME AS IN FIG. 7

by the residual-wave current since the leaky-mode decays
exponentially. Also, for large , the branch-cut integrals are
dominated by the branch-point contributions. Since the
mode is the only one above cutoff in this example, the residual-
wave field should, therefore, be dominated by the branch-point
contribution at the branch point. This observation was
originally pointed out and discussed in [26] in connection with
higher order leaky modes excited on stripline structures. It
explains why the residual GPOF waves (the ones in addition to
the first two) have a propagation constant that is very close to
that of the parallel-plate mode. The residual-wave current
does not decay exponentially, as the leaky-mode current does,
so it often takes more than one GPOF wave to accurately
model the residual wave.

Table III shows a comparison between the theoretical ex-
citation coefficients and the GPOF fit versus frequency, to
study how the physical meaning of the leaky mode changes
with frequency. The structure is the same as that used in
Table II, except that the strip is a little narrower (7 mm
instead of 10 mm). The four GPOF waves with the largest
amplitudes are shown for each frequency. The GPOF waves
have been ordered so that the first one corresponds to the
bound mode, while the second one corresponds to the leaky
mode. Table III is shown in two parts, where (a) is for
frequencies above 1.5 GHz, and (b) is for frequencies below
1.5 GHz (in the spectral-gap region). For all frequencies, the
agreement between the theoretical values and the GPOF results
is excellent for the bound mode, as expected (since this mode
always has complete physical meaning). For the leaky mode,
the agreement with the second GPOF wave is quite good at
10 GHz, and becomes progressively worse as the frequency
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TABLE III
THEORETICAL PROPAGATION CONSTANTS AND AMPLITUDES (REAL, IMAGINARY )
DETERMINED FROM THE POLE LOCATIONS AND THE RESIDUES OF THEPOLES IN

THE kz PLANE, AND THOSE DETERMINED NUMERICALLY BY THE GPOF
METHOD FOR A DELTA–GAP SOURCE. THE STRUCTURE IS THESAME

AS IN TABLES I AND II, EXCEPT FOR A DIFFERENT STRIP WIDTH

(a)

(b)

decreases. This is because the leaky mode is approaching the
spectral gap. (The loss of physical meaning as the spectral
gap is approached has been previously studied for a simpler
structure, consisting of a line source inside a dielectric-layer
leaky-wave antenna in [12].) Even at 4 GHz, where the leaky
solution is not yet in the spectral gap, the leaky mode has
already begun to lose physical meaning, as can be seen by
comparing the theoretical amplitude of the leaky mode and
the amplitude of the second GPOF wave. At 2 GHz, close
to the spectral-gap boundary, there is no agreement between
the theoretical leaky-mode amplitude and the second GPOF
wave amplitude, although there is still a somewhat reasonable
agreement between the propagation constants. Below 2 GHz,
it is not even possible to determine which of the GPOF waves
matches with the leaky mode since there is no agreement at all
in either amplitude or propagation constant. In this frequency
range, the leaky mode has lost all physical meaning.

TABLE IV
THEORETICAL AND GPOF PROPAGATION CONSTANTS AND AMPLITUDES

(REAL, IMAGINARY ) FOR DELTA–GAP AND VED SOURCES AT

8.0 GHz. THE STRUCTURE IS THE SAME AS IN TABLE III

Although the quantitative comparison between the complete
and the leaky-mode current will depend in part on the type of
source and the specific structure, it is expected that the general
conclusion provided by the results of Table III is still valid,
and that the physical meaning of a leaky mode is gradually
lost as the leaky mode enters the spectral-gap region. However,
the rate at which the physical meaning is lost will, in general,
depend on the type of structure.

Table IV shows a comparison between results obtained from
a delta–gap feed and a VED feed for the same structure as in
Table III at a frequency of 8.0 GHz. The VED source is in
the upper layer (air region), halfway between the strip and
upper ground plane. The four GPOF waves with the largest
amplitudes are shown for each excitation. The VED source
excites both the bound and leaky modes more strongly than
the delta–gap feed does. However, perhaps the most interesting
point is that the VED feed excites the leaky mode much more
strongly than the bound mode, whereas the delta–gap feed
excites both modes somewhat equally. This can be explained
by the observation that the leaky-mode field is primarily
confined to the upper layer, whereas the field of the bound
mode is primarily confined to the lower layer. (Due to the
wide strip, the leaky and bound modes are both quasi-TEM
parallel-plate modes, existing in the upper and lower regions,
respectively.) The vertical dipole is in the top layer, thus it
primarily excites the leaky mode. The delta–gap feed “sees”
both regions and, thus, excites both modes more equally.

IV. CONCLUSIONS

A quasi-analytical method for calculating the current on
the conducting strip of a multilayered stripline structure when
excited by a finite source has been presented. The formulation
has been presented for a VED in proximity to the strip
or a delta–gap feed on the strip. This method constructs a
numerical Green’s function for the current on the strip due to
the source by using a Fourier transform of the source excitation
to decompose it into a set of phased sources that are infinite in
the longitudinal direction. A Green’s function for a line-source
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type of excitation (one-dimensional Green’s function) is then
used to calculate the solution due to each phased source. The
numerical Green’s function is used to calculate the complete
current on the strip that is produced by the finite source and
also the current due to only the bound or leaky modes that
are excited by the source. The currents of the bound and
leaky modes are conveniently calculated from the numerical
Green’s function by taking the residue contribution from the
corresponding poles in the longitudinal wavenumber plane.

Since different paths of integration are possible for the cal-
culation of the one-dimensional Green’s function,branch cuts
appear in the longitudinal wavenumber plane of integration for
the calculation of the numerical Green’s function. A careful
examination of these branch cuts provides much insight into
the physical meaning of the leaky modes that are excited
on the structure. The physical meaning of a leaky mode is
defined here by the degree of correlation between the complete
current on the strip and that due to the leaky mode alone. It
is concluded that the “path consistency condition,” previously
introduced as a speculative condition for the physical meaning
of a leaky mode is indeed a correctnecessarycondition for a
leaky mode to have well-established physical meaning.

Numerical results are presented that compare the currents
of the bound and leaky modes with the complete current on
the strip. The GPOF method is used to help quantify this
comparison. It is established that a practical source may indeed
excite a leaky mode with an appreciable amplitude, and that the
physical meaning of a leaky mode does depend on the phase
constant of the mode. As the “spectral-gap” is approached
where the path consistency condition is violated, the leaky
mode begins to lose physical meaning.
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[5] F. Mesa and R. Marqúes, “Low-frequency leaky regime in covered
multilayered striplines,”IEEE Trans. Microwave Theory and Tech., vol.
44, pp. 1521–1525, Sept. 1996.

[6] A. Oliner and K. S. Lee, “The nature of leakage from higher order modes
on microstrip lines,” inIEEE Int. Microwave Symp. Dig., Baltimore,
MD, June 1986, pp. 57–60.

[7] K. A. Michalski and D. Zheng, “Rigorous analysis of open microstrip
lines of arbitrary cross section in bound and leaky regions,”IEEE Trans.
Microwave Theory Tech., vol. 37, pp. 2005–2010, Dec. 1989.

[8] H. Shigesawa, M. Tsuji, and A. A. Oliner, “Conductor-backed slotline
and coplanar waveguide: Dangers and full-wave analysis,” inIEEE Int.
Microwave Symp. Dig., New York, NY, May 1988, pp. 199–202.

[9] M. Tsuji, H. Shigesawa, and A. A. Oliner, “Simultaneous propagation of
both bound and leaky dominant modes on conductor-backed coplanar

strips,” in IEEE Int. Microwave Symp. Dig., Atlanta, GA, June 1993,
pp. 1295–1298.

[10] , “Printed circuit waveguides with anisotropic substrates: A new
leakage effect,” inIEEE Int. Microwave Symp. Dig., Long Beach, CA,
June 1989, pp. 783–786.

[11] D. Nghiem, J. T. Williams, D. R. Jackson, and A. A. Oliner, “Leakage
of the dominant mode on microstrip with an isotropic substrate: Theory
and measurements,”IEEE Trans. Microwave Theory Tech., vol. 44, pp.
1710–1715, Oct. 1996.

[12] H. Ostner, J. Detlefsen, and D. R. Jackson, “Radiation from one-
dimensional dielectric leaky-wave antennas,”IEEE Trans. Antennas
Propagat., vol. 41, pp. 344–348, Apr. 1995.

[13] T. Tamir and A. A. Oliner, “Complex guided waves: Part 1. Fields at
an interface,”Proc. Inst. Elect. Eng., vol. 110, pp. 310–324, Feb. 1963.

[14] , “Complex guided waves: Part 2. Relation to radiation patterns,”
Proc. Inst. Elect. Eng., vol. 110, pp. 325–334, Feb. 1963.

[15] J. Boukamp and R. H. Jansen, “Spectral domain investigation of
surface-wave excitation and radiation by microstrip lines and microstrip
resonators,” inProc. European Microwave Conf., 1983, pp. 721–726.

[16] K. A. Michalski, “Rigorous analysis of open microstrip lines with finite
thickness—The mixed potential integral equation approach,” inNat.
Radio Sci. Meeting Abstracts, Boulder, CO, Jan. 1989, p. 215.

[17] N. K. Das and D. M. Pozar, “Full-wave spectral-domain computation
of material, radiation, and guided wave losses in infinite multilayered
printed transmission lines,”IEEE Trans. Microwave Theory Tech., vol.
39, pp. 54–63, Jan. 1991.

[18] D. P. Nyquist, J. S. Bagby, C. H. Lee, and Y. Yuan, “Identification of
propagation regimes on integrated microstrip transmission lines,”IEEE
Trans. Microwave Theory Tech., vol. 41, pp. 1887–1893, Nov. 1993.

[19] F. Mesa and R. Marqu´es, “Integral representation of spatial Green’s
function and spectral domain analysis of leaky covered strip-like lines,”
IEEE Trans. Microwave Theory Tech., vol. 43, pp. 828–837, Apr. 1995.

[20] T. P. Sarkar and O. Pereira, “Using the matrix pencil method to
estimate the parameters of a sum of complex exponents,”IEEE Antennas
Propagat. Mag., vol. 37, pp. 48–55, Feb. 1995.

[21] Z. A. Maricevic, T. K. Sarkar, Y, Hua, and A. R. Djordjevic, “Time-
domain measurements with the Hewlett-Packard network analyzer
HP8510 using the matrix pencil method,”IEEE Trans. Microwave
Theory Tech., vol. 39, pp. 538–547, Mar. 1991.

[22] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating pa-
rameters of exponentially damped/undamped sinusoids in noise,”IEEE
Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 814–824, May
1990.

[23] , “Generalized pencil of functions method for extracting the poles
of an electromagnetic system from its transient response,”IEEE Trans.
Antennas Propagat., vol. 37, pp. 229–234, Feb. 1989.

[24] K. A. Michalski, code “NEWPEN,” private communication.
[25] T. K. Sarkar, Z. A. Maricevic, and M. Kahrizi, “An accurate de-

embedding procedure for characterizing discontinuities,”Int. J. Mi-
crowave Millimeter-Wave Computer-Aided Eng., vol. 2, no. 3, pp.
135–143, July 1992.

[26] D. P. Nyquist and D. J. Infante, “Discrete higher-order leaky-wave
modes and the continuous spectrum of stripline,”IEICE Trans., vol.
E78-C, no. 10, pp. 1331–1338, Oct. 1995.

[27] H. Shigesawa, M. Tsuji, and A. A. Oliner, “The nature of the spectral
gap between bound and leaky solutions when dielectric loss is present
in printed circuit lines,”Radio Sci., vol. 28, no. 6, pp. 1235–1243,
Nov.–Dec. 1993.

Carlo Di Nallo (S’95–A’96) was born in Varese,
Italy, in 1967. He received the laurea (cum laude)
and Ph.D. degrees from “La Sapienza,” University
of Rome, Rome, Italy, in 1992 and 1996, respec-
tively.

In 1992, he joined the Department of Electronic
Engineering, “La Sapienza,” University of Rome,
as a Doctoral Student in applied electromagnetics.
From May to October 1995, he was at the University
of Houston, Houston, TX, as a Visiting Student.
His research interests concern numerical modeling

of microwave passive components, planar antenna analysis and design, and
theoretical and experimental studies on leaky waves.



DI NALLO et al.: EXCITATION OF LEAKY MODES ON MULTILAYER STRIPLINE STRUCTURES 1071

Francisco Mesa(M’94) was born in Cádiz, Spain,
on April 15, 1965. He received the Licenciado
and Doctor degrees from the University of Seville,
Seville, Spain, in 1989 and 1991, respectively, both
in physics.

He is currently an Associate Professor in the De-
partment of Applied Physics, University of Seville.
His research interests focus on electromagnetic
propagation/radiation in planar lines with general
anisotropic materials.

David R. Jackson (S’83–M’84–SM’95) was born
in St. Louis, MO, on March 28, 1957. He re-
ceived the B.S.E.E. and M.S.E.E. degrees from
the University of Missouri, Columbia, in 1979 and
1981, respectively, and the Ph.D. degree in electrical
engineering from the University of California at Los
Angeles, in 1985.

From 1985 to 1991, he was an Assistant Profes-
sor in the Department of Electrical and Computer
Engineering, University of Houston, Houston, TX,
and since 1991, he has been an Associate Professor.

His research interests currently include computer-aided design of microstrip
antennas and circuits, microstrip antenna analysis and design, periodic struc-
tures, leaky-wave antennas, leakage effects in microwave integrated circuits,
and bioelectromagnetics. He is on the Editorial Board of theJournal of RF
and Microwave Computer-Aided Engineering.

Dr. Jackson is a member of URSI, U.S. Commission B. He is currently an
associate editor for the IEEE TRANSACTIONS ONANTENNAS AND PROPAGATION,
and is on the Editorial Board for the IEEE TRANSACTIONS ON MICROWAVE

THEORY AND TECHNIQUES.


