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Excitation of Leaky Modes on Multilayer
Stripline Structures
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Abstract—A quasi-analytical method for calculating the ex-
citation of leaky modes on multilayer stripline structures by a
finite source is presented in this paper. Simple sources such as an
infinitesimal dipole near the conducting strip or a delta—gap feed

on the conducting strip of the transmission line are considered.

The method uses a numerically constructed Green'’s function |'|2 ]

for the source in the presence of the conducting strip, which

is calculated from Fourier transform theory in terms of a one- h ] b=

dimensional Green’s function for a line source in the presence 1 =1

of the conducting strip. The numerical Green’s function involves S

a one-dimensional integration in the longitudinal wavenumber o

plane. The residue contributions from the poles of the Green's Fig- 1. Two-layered stripline structure.

function define the excitation amplitudes of the leaky and bound

modes that exist on the structure. The numerical Green'’s function distribution on the conducting strip that closely resembles
is also used to numerically calculate the complete current on that of a quasi-TEM mode of propagation. Therefore, such
the strip excited by the source. The correlat_lon between t_he a leaky mode will typically be excited quite strongly by
leaky-mode current and the complete current is used to define .

the extent of the physical meaning of the leaky mode. The & customary feed. Leaky dominant modes have been found
generalized pencil of functions (GPOF) method is used to study On multilayer stripline structures [2]-[5], coplanar waveguide
this correlation by resolving the complete current on the stripinto  and slotline [8], coplanar strips [9], microstrip lines with an
?hxepcl);;kr;/tl?ri (;’éaev“;‘ﬁﬁe""gg‘sii;? :Qggn?r?éngf‘trﬁg l‘:‘s’gtytrr‘neoguersreigta?;oanisotropic substrate [10], and recently on microstrip lines with
analytically examined by consideration of the branch cuts in the an isotropic substrate [11_]' .

longitudinal wavenumber plane for the numerical Green's func-  Although the propagation properties of leaky modes on
tion integration. A “path consistency condition” is established as printed-circuit lines have been studied quite thoroughly in
a necessary condition for the physical meaning of the leaky mode. recent years, much less attention has been devoted to the
Index Terms—teaky waves, microwave integrated circuits, pla- interesting and practical issue of excitation of these modes
nar transmission lines, planar waveguides, stripline, transmission by a practical source of finite size, such as a delta—gap feed

lines, waveguide excitation. on the conducting strip or a probe feed. The issue of excitation
by a finite-size feed is an important one since it can be used to
. INTRODUCTION definethe degree of physical meaning of the leaky mode [12].

HE existence of leaky modes on printed-circuit transmidn this paper, thexcitationof leaky modes on printed-circuit
sion lines has recently been the subject of consideratiiiees by afinite sourceis investigated. Although the method
interest [1]-[10]. These modes are usually undesirable sirgegeneral, results will be presented for the two-layer stripline
they result in increased attenuation of the signal, and maifucture shown in Fig. 1. One advantage of this structure is
result in crosstalk with adjacent circuit components and othéat it allows considerable flexibility in controlling the phase
spurious effects, including interference with bound modes the@nstants of the leaky, bound, and parallel-plate modes, by
also propagate on the line [3]. Of particular interest is trgelection of the dimensions and primittivities. The source may
existence of leakydominantmodes on the structure [1]-[5]. consist of an infinitesimal dipole located in proximity to the
A dominant leaky mode (as opposed to a le&ligher order conducting strip or a delta—gap feed located on the strip.
mode, investigated in [6] and [7]) is one that has a current The physical meaning of a leaky mode is defined here by
the degree to which the fields of the leaky mode resemble
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radiation occurs. In particular, for a leaky printed-circuit line, Y
the angular region of validity always includes the printed line t
itself. Therefore, if a leaky mode on a printed-circuit line
is physically meaningful, the current of the leaky mode on
the conducting strip that is excited by the source would be
expected to agree well with theompletestrip current due
to the source excitation (agreement both in amplitude and
phase). Therefore, weefinethe degree of physical meaningFi
of a leaky mode on a printed-circuit line by the degree to
which the strip current of the leaky mode agrees with the
complete strip current. The excitation of the current on tH¥ED) and a delta—gap feed. The VED serves as a model for
conducting strip by a finite source thus provides a conveniehtProbe feed. The conducting strip is assumed to be infinite
way to investigate the physical meaning of a leaky mode dﬁh the £z directions, and is perfectly conducting. Another
a printed-line structure. assumption is that the strip width is sufficiently small that the
In this paper, the calculation of the strip current due to tHgansverse(z-directed) current may be neglected. The VED
finite source excitation is performed by constructing a numesource is considered first.
ical Green’s function, which gives the current induced on an The vertical dipole is represented as a planar sheet of
infinite strip conductor due to thiinite source. The calculated vertical current aty = ¢/, having the form
strip current (referred to here as the “complete” current) is

g. 2. VED and delta—gap excitations for the two-layered stripline.

numerically exact, under the assumption that the strip width is Jy(z,z) = T(x)L(2). @)
small (since a fixed transverse dependence of the longitudinal )
current is assumed, and the transverse current is neglected0’ the dipole, T'(z) = é(x) and L(z) = é(z), but

The numerical Green's function is obtained by Fourier tran81€ present derivation is general. The current source is then
forming which is transforming the source in the longitudindiePresented as

(z)-direction. Thus, the problem is essentially reduced to 1 oo '
one of calculating the strip current due to an infinite set Jy(z,z) =T(x) - o / L(k)e %% df_. 2
of phased-line source excitations gae-dimensionalGreen'’s T oo

function problem). The one-dimensional Green's function is This equation decomposes the original source into an infinite
in turn calculated from a spectral integration in the transvergg; of phased-line source currents, each having the form
wavenumbelk,) plane, which is the same type of integration '

used to solve for the modal solutions on the guiding structure Jf,(a?, z) = A(k)T(x)e k=* (3)
[15]-[19]. One of the properties of thee, integration is that

different choices are possible for the path of integration [2vhere

A real-axis path defines a modal solution that is bound in the 1.

transverse/+x) directions, while a path that detours around A(k,) = — L(k,) dk,.

the poles of the background structure results in a solution that 2m

is improper in the transverse directions. It is shown here thatThe field £, aty (the location of the strip) from an arbitrary

the different choices of path in the transverse wavenumigianar sheet of vertical curred,(z, z) aty’ can be written as
plane give rise tdranch cutsn the longitudinal wavenumber

plane for the integration ik, that determines the numerical (z,9,7) = 1 /Oo /Oo J (ko K.
Green's function. A careful consideration of these branch cuts ™" (2x)2 J_ J_ ¥ 7%
provides much insight into the physical meaning of the leaky A ro oy =i (ka2 /
modes that are excited by the source, corresponding to the ey (b, Koy, 4 )e dk k.
poles in thek. plane. 4)

The complete current is compared to the current of th = P , .
leaky mode alone, defined from the residue contribution of ﬂt]v%ere Gy (K, K5,y/) 1S the spectral Green's function for

) ) . . ,.the field £, due to a vertical dipole af = ¥ [the notationk’,
leaky-wave pole in thé. integration of the numerical Green'’s. . . . L .
. . . is used to avoid confusion with, appearing in (3)]. Applying
function. The degree of physical meaning for the leaky mo ﬁ) to the phased-line current in (3), and using the Fourier

is defined by the correlation between the complete and leaky:

. : . tegral representation of the delta function gives the field
mode currents. The generalized pencil of functions (GPOr m the phased-line source as

method [20]-[25], which resolves the complete current into

a set of exponential waves, is used to help quantify t%l (1,2) = A(k.)e=ib=> 1 e T(ky)
correlation. HY 2= i 21 J_ oo *

. ke
Il. ANALYSIS Goy(bz kzsy, 9 )e™ ™" dky. (5)
This field from each phased-line current acts as an incident

) i o _ field that induces a phased current on the strip, having the form
Fig. 2 shows two possible excitations for a multilayer

stripline structure: a unit-strength vertical electric dipole J? (z,2) = B(k.)n(x)e k=7 (6)

A. Formulation for Strip Current
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whereB(k,) is an amplitude function that depends/fon and contribution to the integral (13) at a pole gives, by definition,

the transverse current functioffx) is taken as the current amplitude of the guided mode (either bound or
1 leaky) and defines the excitation coefficient of the guided
5 , w/hpin < 2 mode.
pz)=4 ™ (E) — 2 7) For the delta—gap feed, the analysis is somewhat different
1 2 because the source is an impressed electric field on the surface
=, w/Rpin > 2 of the conducting strip (the delta—gap field). The impressed
w electric field is represented as

where hp;, = min(hy, he). The same transverse current _
dependence is assumed for &ll (valid for a narrow strip). B (v, 7) = T(x)Ly(2). (14)
Similar to (5), the field due to the phased strip current in (6) is The function7’(x) is taken as unity over the width of

, 1 [ the strip. The longitudinal gap functiod,(z) is é(z) for
EP(x,y,z) = B(k.)e "% . o / (k=) an idealized delta—gap feed. However, in order to make the
. - , transform converge fasteL,(z) is taken as
Goo(bin by y)e ™" dhy. (8) >
1 e~/
where L) =0 — (19)
(k) = Jo(kaw/2),  w/hmin <2 (9) Whered is an effective gap width. This function has the
¢ sinc(kzw/2),  w/hmin > 2 transform
with Jo the zeroth-order Bessel function anghc(z) = Ly(k.) = ¢~ /D) (16)

sin(z)/xz. The electric-field integral equation (EFIE) states that
the field due to the strip current in (8) must cancel the field due
to the line source in (5). The EFIE is enforced by multiplyin@S

The impressed electric field on the strip is then represented

both sides of the resulting equation lpyz) and integrating B.(,7) = T(x) - 1 /00 Ly (k)e 7%= d. (17)
over the strip width (Galerkin testing). The resulting equation - 2r Jooo T .
yields the solution for the amplitude function as which is a collection of phased sources of the form

B(k.) = A(k.)R,(k.) (10) E.(2,2) = A(k.)T(z)e™ %= (18)
where where

o - - 1 =
| TGy i) Alke) = g7 Lo(ks) ds.
Rb(kz) = - _oo-oo . (11)

. The current on the strip is represented as a collection of
/ 0% (ke)Gazlba, ki y, y) dks phased currents, as shown in (6), each producing the field

o shown in (8). The field in (8) produced by the phased current is
The complete current induced on the conducting strip déguated with that of (18), and the resulting equation is enforced

to the VED source is then by integrating over the strip width after multiplying by(z).
1 S . This results in
Jo.(x,2) = n(z) - — / L(k )R, (ke %% dk.. (12)
27 J oo B(k.) = A(k2)Ry(k.) (19)

For the particular case of the VED sour€k(z) = 6(z)), where

(12) reduces to w/2
e N | o) o
Joz(@,2) = n(w) - - /_ N Ry(kz)e™ ™= dk..  (13) Ry(k.) = 21 —o—"/2 . (20)
. . . , . / ﬁQ(kx)Gzz(kwa k.sy, y) dk,

Equation (13) is the numerical Green’s function for the exact —c0
current on the s.tripwdue to the VED. The functi®qy (k. ) is Using (7), and recalling thal’(z) = 1 for the delta—gap
given by (11) withT(k,) = 1. _ ~ case, the integral in the numerator of (20) is unity. Hence,

The analysis for the case of-adirected horizontal electric -
dipole (HED) source is very similar to that for the VED, Ry(k.) = —= (21)
and is omitted. The final result is the same as (11) with / P (k)G oz (ks bozs ) dhiy
Goy(ke, k23 y,y') replaced withG . (kx, k59, y')- —o0

The function®,,(k.) has poles in thé. plane at the values  The total current on the strip is then
of the propagation constants of the guided modes on the 1 o '
structure, eitherk® for the bound mode ok for a leaky J,.(z,2) = n(x)  — / Ly(k)Ry(ko)e 7%= dk.. (22)
mode. This is because the denominator in (11) is precisely the 2 oo
same integral that appears in the solution of the propagatiorEquation (22) is the numerical Green’s function for the

constant for the guided mode on the structure. The residuarrent on the strip when excited by a delta—gap feed.
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Kyi same conclusion holds for the poirtkryo. Fig. 4(e) and
(f) correspond to points 4 and 5 in Fig. 4(a), and shows the
M\ evolution of the path as the point in the plane circles the
_ branch point akryo once again. As the point ends up at the
o X starting position (point 5), the path in Fig. 4(f) detours around
\/‘ each pole in thée:, plane twice in opposite directions. This
is equivalent to the real-axis path of Fig. 4(b). Hence, it is

Fig. 3. Two possible paths of integration in the plane. The real-axis path concluded that the branch cut corresponds ttwa-sheeted

yields the bound-mode solution, while the path that detours around the pdRiemann surface (as does a square-root type of branch point).

yields the leaky-mode solution. The important observation thagioles of the background
structure give rise to branch points in the longitudinal
wavenumber planewhich is key to the discussion below on

B. Discussion of Integration Paths the physical meaning of the leaky modes, was recognized orig-

An important consideration in the evaluation of the numetoally by Mesa and Mardes [19] and by Nyquist and Infante
ical Green’s function is the choice of path in tttg plane [26]. The proof given here, based on considerations of the path
for the evaluation of the functiom,(k.) in (11) or R,(k.) of integration in thek, plane, provides additional insights and
in (21). There are poles in the, plane corresponding to thecomplements the discussions given in [19] and [26].

parallel-plate modes of the background structure, located at Branch points will occur in thek. plane at all points
k. = kyp. IN Most cases, only one mod&M\,), or at most

) two (TMo andTE, ), are above cutoff. All of the modes below
cutoff correspond to branch points on the imaginary axis of
the k. plane (the propagation constant of a parallel-plate mode

wherek;, is the propagation wavenumber of a parallel-platge oy cutoff is purely imaginary). Accounting for all possible

mode. In most practical cases, only the fundamefitdlo 5 4es there are an infinite number of sheets, two from each
mode(k,,, = krmo) is above cutoff. The path of integration iNyranch point. To completely specify where a point in the

thek, plane may or may not either be chosen to detour aroupflne js; it is necessary to indicate which sheet (top or bottom)

the poles. For example, K. is chosen in the fourth quadrante hoint is on for each of the branch points. Fortunately, only
of the complex plane, the poles in the plane will be inthe 5 fe\y of the possible combinations correspond to physically

first and third quadrants, as shown in Fig. 3 (illustrated fQfeaningful leaky-mode pole locations, as will be explained
a single pair of poles corresponding &9, = ko). There shortly.

are two possible pa_ths shown: the real axis path (which will The exact shape of theranch cutsis arbitrary. However,
yield a bound solution) and the one that detours around th&onyenient choice is the Sommerfeld branch cut, in analogy
poles (which will yield an improper solution). Therefore, th§ith the same shape of branch cut that is commonly used
function R(k.) (which denotes eitheR, (k.) or Ry(k.)) is a \hen dealing with the wavenumber mapping shown in (23).
multivalued function, which implies the existence of branchhe Sommerfeld choice of branch cuts is shown in Fig. 5(a)
cuts in thek. plane in order to restrict the functioR(k.) for the case of one mode above cutoff, and in Fig. 5(b) for
to being single valued. These branch cuts play a crucial rQl§s case of two modes above cutoff. Also shown in these
in providing insight into the physical meaning of the leakyigures are the poles corresponding to the bogiid and leaky
modes excited on the structure. (k) modes that can propagate on the stripline structure. A
To examine the nature of the branch cuts and establish whegvenient property of the Sommerfeld branch cut is that all
the branch points are, it is helpful to note that (23) magsoints on one of the sheets (denoted as the top sheet) éf the
the real axis of thek, plane to that part of the axes in theplane correspond to paths in tthe plane that do not detour
k. plane labeledR in Fig. 4(a) (solid line). The imaginary around the poles in the, plane—that is, the path is theal
axis in thek, plane is mapped to the part of the real axigxis.Points on théottom sheetorrespond to paths theetour
in the k. plane that is labeled | (dashed line). The origin o4round the polesn the %, plane (such a path is equivalent
the k&, plane is mapped to the poiritryro in the k. plane. to the real axis path plus the residue contribution from the
As a point in thek. plane moves around the poitryo, captured poles). This is in analogy with the usual property of
the poles in thek, plane cross the real axis and then théhe Sommerfeld branch cuts for radiation problems, where the
imaginary axis to return to their original positions. This igsop sheet is “proper” and the bottom sheet is “improper.”
illustrated in Fig. 4(b)—(d), which shows the pole locations The branch cuts in thé, plane provide insight into the
corresponding to the points labeled 1-3 in Fig. 4(a). Note thaitiysical meaning of a leaky mode that is excited by the source.
the path of integration is continuously deformed as the polg@se path of integration in thk. plane in (13) or (22) is along
move, so that the integration is a continuous functiorkaf the real axis, except that the path detours around the bound-
At point 3, one complete trip around the polagno has been mode poles that lie on the real axis (above the pole on the
made. The path in the, plane has changed from the real axipositive real axis, below the one on the negative real axis).
(point 1) to a path that detours around the poles (the path tfidte path stays on the top sheet of all branch points. (This path
is used to obtain the leaky-mode solutions). This demonstratesults in a total field that is bounded in space, which must be
that the pointkrye is a branch pointin the k. plane. The the case for the field from a finite-source excitation). If a leaky-
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Fig. 4. (a) Thek. plane, showing the mapping of the rdal axis as a solid lind R) and the imaginary:, axis as a dashed ling). The line R is the

entire imaginary axis of thé. plane, whilel is the real axis with the part between the branch points excluded. Also shown is a path that encircles the point
kpmo twice, with various positions labeled. (b)—(f) Show paths in teplane, corresponding to the various valuescoflabeled in part (a).

Fig. 5. (a) Sommerfeld branch cuts when only one m¢tiadly) is above
cutoff. (b) Sommerfeld branch cuts when two mod&s\l, and TE; ) are
above cutoff.

mode pole is close to the integration path in theplane, and
the residue of the pole is not too small, then the pole will ma
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Fig. 6. Thek. plane when two modeSI'M, and TE, ) are above cutoff,
showing various possible pole locations.

a sharply peaked well-defined component; consequently, the
field calculated from the path of integration will not resemble
that of the leaky mode alone. Thereformecessargondition
for the leaky mode to have strong physical meaning is that the
leaky-mode pole be close to the path of integration.

An important point of discussion is the word “close.” Here,
the term “close” means close in th@iemann surfacesense,
not in the geometrical sense. To illustrate this, consider several
possible pole locations in the. plane of Fig. 5(b), shown in
Fig. 6 as points4, B, C, and D (only poles in the right half
of the complex plane are shown for simplicity). Pointis

fsumed to be on the top sheet of all branch points. Rbint

a strong contribution to the path integration. This ContribUtio&rresponds to the location of the bound-mode pole, which is
will result in a strip current that closely resembles the curregh the real axis and hds,. > kro, while points B, €, and
of the leaky mode, i.e., the contribution from the residue of the are possible locations of a leaky-mode pole. Clearly, point

leaky-wave polek’™. If the pole is further from the path, its

A is close to the path (and this agrees with the well-known

contribution will be blurred out, and the integrand will not havéact that the bound mode is always physically meaningful).
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Point B hask., > krw,, but is assumed to reside on the Ill. RESULTS
bottom sheet of thd'M, branch point, and the top sheet of

all others (point5 would correspond to the path shown ing compared with the current of the leaky mode in order to
F!g. 3, W.h'Ch_ detours aroun_d tiEM, parallel-plate pole;). illustrate the determination of physical meaning of the leaky
_S|.nc:a p?'mB is on the opposite sheet.to the one the path 'S Ofhode. The complete current on the strip is calculated from (13)
it is *far” from the path, even though it may have coor_dlnateﬁ)r the VED or (22) for the delta—gap source (which assumes
(kar, ki) that aregeometncal_lyclose to the path. Point’ single basis function of current for the transverse variation).
haskrer < kep < kryo, and is on the bottom sheet of therye o, rent of the leaky mode is obtained by calculating the

TMo, branch point .and the top sheet of all others. This pomt}%sidue contribution from the corresponding integrals, which
close to the path since the path IS reached by smoothly MOVii&inesthe excitation coefficient of the leaky mode. (The
upward from the point on the Rlema_nn surfgce, passing frc.’é?(citation coefficient of the bound mode is also calculated in
the bottom sheet to the top sheet while continuously chang%qS way, although the focus of the resuilts will be on the leaky

the value of the function. A point at positi@i, but on the top : . ) .
. mode). Results have also been obtained using multiple basis
sheet of theI'M, branch point, would be far from the path . Lo : . :
in the Riemann sense functions for the longitudinal current and using basis functions
' {or the transversertdirected) current. These results have only

Point D hask. < krgg, and is located on the bottom shee . . . X
. : o shown very small differences with the results obtained using a
of both theTM, and TE; branch points. This point is also ™. . : : Lo
single basis function, since the strip width is small compared

close to the path since the path is reached by smoothly crossin
both branch cuts (moving continuously on the Riemann surfatg wavelength for all of the results shown here.
“To help quantify the comparison, the GPOF method

to the sheet that is proper for all branch points). 2011251 i dt imate th lete stri ¢
For a leaky-mode pole at points or D, any other location [ : I-{25] is used to approximate the complete strip curren
h a set of exponential waves. The development of the

on different sheets other than those mentioned above WO%OF thod 120 d it i lication t inted
not be close to the path. A concise way to summarize this . metho [b ] gnk s Teczesn app.(ljca lon ?cfprl_n ed-
necessary condition for physical meaning is that provided jyeult structures by >ar aet al. [25] provides an € ecuye .

| for the characterization of the current on a printed-circuit

the “path consistency condition.” This condition was discusse , . .
in [2] (where it was termed the “condition of leakage”) as ne. In this study, the amplitude and propagation constants of

speculative criterion for when leaky modes may be physicallj¢ GPOF approximation are compared with the theoretical
meaningful. It relates to the choice of path shown in Fig. @_mplltudes (excitation coefficients) and propagation constants

This criterion states that in order for a leaky mode to have weflf the bound and leaky modes, and this comparison is used to

established physical meaning, the value of the phase consfRIore the physical meaning of the leaky modes.
/3 = Re(k") must beconsistenwith the choice of path used The dispersion curves showing the normalized phase con-
to obtain the leaky mode. The word “consistent” means thgnts for the bound, leaky, afitvl, modes of the two-layered
the path must detour around (capture the residues from) ofjucture in Fig. 1 are shown in Fig. 7(a). Fig. 7(b) shows
those poles for whichs < k,,, and no others. (Of course, thethe normalized attenuation constant of_ the Igaky modg. The
value of the propagation constant is not known until after tigructure has been designed with a wide strip and with the
numerical solution is obtained. The numerical solution used R§rmittivity of the bottom layer much larger than that of the
obtain the propagation constant involves the path of integratiftP layer (which is air). This results in a large separation
in the k, plane and, hence, it is not usually known if thd€etween the dispersion curves for the three different solutions
solution will be consistent with the path in advance.) Thi§ Fig. 7(a), which makes the results easier to interpret. The
speculative condition was discussed in [2] by using physic@Pectral gap” [27] begins at about 1.25 GHz. Below this
reasoning (without mathematical justification). Physically, frequency, 5 > krmo and the leaky-mode solution thus
a leaky mode hag > k,, for a certain parallel-plate mode,Violates the “path consistency condition,” which means that
conventional reasoning dictates that the leaky mode should fots not expected to have much physical meaning. Below
radiate into this parallel-plate mode. This physical reasoningds® GHz, the leaky solution does not exist and, instead, a pair
discussed in [1]. It is seen that the “path consistency conditioff improper real solutions are found [3], [5]. These improper
is precisely the same condition as requires the leaky-mode ptg@l solutions have no physical significance and are not shown
to be close to the path of integration in the Riemann sense. FrFig. 7(a).
example, ifkrr < k. < kEravo (point C in Fig. 6), the pole  Tables | and 1l first present results for the structure in
is close to the path if it is on the bottom sheet of onlyTHd,, Fig. 7 to verify the convergence of the GPOF method as the
branch point, and not th&E; branch point. This correspondsnumber of sample points, length of the sampling interval, and
to a path of integration in thé&, plane that detours aroundprecision parameter are varied. (The precision parameter is a
only the TM,, poles, not theTE; poles. negative integef—m) that determines the degree of fitting.
Although the previous conclusions have been illustrated féhe GPOF routine picks the number of exponential waves to
the case of one or two parallel-plate modes above cutofihtain a fitting that is, roughly speaking, accurate to't0
the preceding argument can easily be generalized to d@Q].) For these tables, a delta—gap feed is used, and the
number of modes above cutoff. The conclusion is that tlieequency is 10 GHz. The theoretical excitation coefficients
path consistency condition is a hecessary condition for a leadmd propagation wavenumbers of the bound and leaky modes,
mode to have well-established physical meaning. as well as the propagation wavenumber of 1d, mode, are

In this section, the complete current on the conducting strip
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3.5 TABLE |
THEORETICAL PROPAGATION CONSTANTS AND AMPLITUDES (REAL, IMAGINARY)
e S s Seen FOR A DELTA—GAP SOURCE AT 10 GHz. THE STRUCTURE IS THESAME AS IN FIG. 7
25 SR IDRRSde SRR WU R o TMO mode
«--- Bound mode MODE k,, [k, AMPLITUDE
2 Leaky mode
2
= TMO 1.63075, 0 NA
1.5 .
) T bound (3.04248, 0) (0.01512, 0)
leaky (0.94444, -0.18471) (0.01325, -0.00287)
0.5 |
0 . L
05 15 25 35 45 55 65 75 85 95 TABLE 1
Freq (GHz) PROPAGATION CONSTANTS AND AMPLITUDES (REAL, IMAGINARY)
FROM THE GPOF METHOD FOR A DELTA—GAP SOURCE AT
(@) 10 GHz. THE STRUCTURE IS THE SAME AS IN FIG. 7
04 N (L/dk| m kzo / ko AMPLITUDE
0.35 S —
/ 100 20 ) (3.04502, -0.00273) (0.01534, 0.0004)
0.3 ’ ) (0.92311, -0.18535) (0.01142, -0.0050)
0.25 [ (3.04241, -0.000017) (0.01511, 0.000003)
L [ / 500 5.0 -3 (0.94343, -0.18490) (0.01281, -0.0029)
3 0.2 / (1.63487, -0.10258) (-0.00022, 0.00026)
0.15 (3.04241, 0.000013) (0.01513, 0.000005)
/ (0.94441, -0.18476) (0.01352, -0.002715)
0.1 1000 9.0 -4 (1.63160, -0.19947) | (-0.00065, -0.00027)
0.05 (1.6314, -0.037262) (-0.000070, 0.000094)
0
05 15 25 35 45 55 65 75 85 95
Freq (GHz) by the residual-wave current since the leaky-mode decays

() exponentially. Also, for larger, the branch-cut integrals are
Fig. 7. (a) Dispersion plot s_howing the Wavent_meers'of the_bound and Iea‘gomm?ted by the branch—pomt cqntrlt_)unons. Since Mq
modes for the structure of Fig. 1. Also shown is the dispersion curve for tﬁgOde is the only one above cutoff in this example, the residual-
propagation wavenumber of tHEM, parallel-plate mode. (b) The attenuationwave field should, therefore, be dominated by the branch-point
(leakage) constant for the leaky mode; = 10.0.¢,2 = 1.0.hy = 1.0mM,  contribytion at theTM, branch point. This observation was
he = 0.5 mm, w = 10.0 mm. .. . . . . . .
originally pointed out and discussed in [26] in connection with
higher order leaky modes excited on stripline structures. It

shown in Table I. The amplitude and propagation constantsgfplains why the residual GPOF waves (the ones in addition to
the GPOF waves are shown in Table Il for various numbeie first two) have a propagation constant that is very close to
of sampling pointsV (the number of waves varies with thethat of theTM, parallel-plate mode. The residual-wave current
parameter-m, as this is picked by the routine). The samplingioes not decay exponentially, as the leaky-mode current does,
region starts atl.; = 1.0}, in all cases to avoid samplingso it often takes more than one GPOF wave to accurately
too near the source (since the near-field current is not welbdel the residual wave.
approximated by only the bound and leaky modes). Table 11l shows a comparison between the theoretical ex-

Comparing Tables | and I, it is seen that the agreemetitation coefficients and the GPOF fit versus frequency, to
between the first two GPOF waves and the bound- and leakyudy how the physical meaning of the leaky mode changes
mode current waves is always good, but improves as téth frequency. The structure is the same as that used in
number of sampling points, upper limit of the sampling intervatable 11, except that the strip is a little narrower (7 mm
(L2), and precision increase. For 1000 sampling points airtstead of 10 mm). The four GPOF waves with the largest
Ly = 9.0), the agreement is excellent. amplitudes are shown for each frequency. The GPOF waves

One interesting point in connection with Table Il is théhave been ordered so that the first one corresponds to the
clear indication of a “residual wave” current on the stripbound mode, while the second one corresponds to the leaky
By definition, the residual wave is the difference betweemode. Table Ill is shown in two parts, where (a) is for
the complete (total) strip current and the current due to tequencies above 1.5 GHz, and (b) is for frequencies below
leaky and bound modes. It is that part of the continuods5 GHz (in the spectral-gap region). For all frequencies, the
spectrum current (complete current minus the current of thgreement between the theoretical values and the GPOF results
bound mode) that is not well approximated by the leaky-mod excellent for the bound mode, as expected (since this mode
current. The continuous spectrum current is represented dilways has complete physical meaning). For the leaky mode,
an integral around the branch cuts in Fig. 5. Asymptoticallthe agreement with the second GPOF wave is quite good at
for large z, the continuous-spectrum current is dominatet0 GHz, and becomes progressively worse as the frequency
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TABLE Il TABLE IV
THEORETICAL PROPAGATION CONSTANTS AND AMPLITUDES (REAL, IMAGINARY) THEORETICAL AND GPOF FROPAGATION CONSTANTS AND AMPLITUDES
DETERMINED FROM THE POLE LOCATIONS AND THE RESIDUES OF THEPOLES IN (ReAL, IMAGINARY) FOR DELTA—GAP AND VED SOURCES AT
THE k. PLANE, AND THOSE DETERMINED NUMERICALLY BY THE GPOF 8.0 GHz. THE STRUCTURE IS THE SAME AS IN TABLE Il
METHOD FOR A DELTA—GAP SOURCE. THE STRUCTURE IS THE SAME
AS IN TABLES | AND I, EXCEPT FOR A DIFFERENT STRIP WIDTH SOURCE ko / kg AMPLITUDE
F (GHz) kzo / ko AMPLITUDE doit " bound | (2.9277,0) (0.01206,0)
Bound (.9827.0) (0.01156,0) eita-gap eory leaky | (1.0800, -0.32283) (0.00761,-0.00178)
10 Theory Leaky (1.01223,-0.27386) (0.00698,-0.00178) TMy (16119, 0)
™M, (1.6307,0) it
(2.9838,-0.60003) (0.01154,0.000016) (2.9275, 0.000015) (0.01204,0.000017)
10 GPOF (1.0152.-0.27761) (0.00692.-0.00212) delta-gap | GPOF (1.0828, -0,32201) (0.00803,-0.00203)
(1.6175,-0.1265) (-0.00016,0.000319) (1.5974, -0.23874) (0.000267,0.000416)
Bound (2.9277,0) (0.01206,0) (1.6110, -0.04738)
8 Theory Leaky (1.08000,-0.3283) (0.00761,-0.00178)
T™g (1.6119,0) bound | (2.9277,0) (-0.41087, 0)
(2.9275,-0.00004) (0.01204,0.000017) VED Theory leaky | (1.0800, -0.32283) (-6.4156, -1.5993)
8 GPOF (1.0893,-0.3221) (0.00803,-0.00203) TM,
(1.6022.-0.1243) (-0.000267,0.000416) (16119, 0)
29275, -0.000067 -0.40950, -0.00035
Bound (283193,0) (0.012816,0) VED GPOF ( ) ( )
6 Theory Leaky (1.1821,-0.36192) (0.0084,-0.000147) (1.0809, -0.32338) (-6.3082, -1.6027)
™o ( 8(‘-5930’0) ) ( (1.6255, -0.21862) (0.19026, -0.00197)
2.8392,0.000014 0.012787,0.000013)
6 GPOF (1.1952,-0.3358) (0.0083,0.000232) (16152, -0.04441) (0.03897, -0.02337)
(1.56846,-0.12211) (-0.000308,0.000738)
Bound (2.6936,0) (0.01393,0)
4 Th Leak 1.3336,-0.36879 0.00949,-0.000459 . . .
N vy Rarppal ¢ ) Although the quantitative comparison between the complete
. cPOF gzéolﬁ,obogoggg) (0.01390,0.000013) and the leaky-mode current will depend in part on the type of
. -0.34 0.00789,0.0011 (e L.
21_57.92,-0_12323; (_0,5006761,0_0009344) source and the specific structure, it is expected that the general
Bound (2.4453,0) (0.015581,0 conclusion provided by the results of Table Il is still valid,
? Theery L?ﬁ‘;y (l's?fé’égbzg)m) (0.01035,0.00266) and that the physical meaning of a leaky mode is gradually
(2.4453,0.000069) (0.015536,0.000015) lost as the leaky mode enters the spectral-gap region. However,
: GPOF Ry G ttonss0 0010 the rate at which the physical meaning is lost will, in general,
depend on the type of structure.
@ Table IV shows a comparison between results obtained from
F (o) PR AMPLITUDE a delta—gap feed and a VED feed for the same structure as in
Bound 2618.0) ©0167155.0) Table Il at a frequency of 8.0 GHz. The VED source is in
! Theory |  Leaky (1.66746,-0.14244) (0o10367,000950)  the upper layer (air region), halfway between the strip and
T™o (1.5816,0) .
22620,-000022) @oiesaoooes)  UPPer ground plane. The four GPOI_: waves with the largest
1 GPOF 1452222766-8 95675862)) <?00:(?127728331131%7> amplitudes are shown for each excitation. The VED source
— —— excites both the bound and leaky modes more strongly than
Bound (2.20785,0) (0.017081,0) . .
0.75 Theory Leaky (1.6995,-0.0559) (0.01028,0.02744) the delta—gap feed does. However, perhaps the most interesting
TMo (1.5814,0) Lo .
E30785,-0.00026) OTT0L0.00005T) point is that the VED feed excites the leaky mode much more
075 GPOF (1.39027,-0.59179) (0.000026,-0.000763)  Strongly than the bound mode, whereas the delta—gap feed
(1.52807,-0.08489) (0.00152,0.001039)

decreases. This is because the leaky mode is approachingnf'l%J
spectral gap. (The loss of physical meaning as the spec
gap is approached has been previously studied for a simpﬁ)er
structure, consisting of a line source inside a dielectric-layer:
leaky-wave antenna in [12].) Even at 4 GHz, where the lea
solution is not yet in the spectral gap, the leaky mode has

(b)

t

excites both modes somewhat equally. This can be explained
by the observation that the leaky-mode field is primarily
confined to the upper layer, whereas the field of the bound
e is primarily confined to the lower layer. (Due to the
wide strip, the leaky and bound modes are both quasi-TEM
arallel-plate modes, existing in the upper and lower regions,
respectively.) The vertical dipole is in the top layer, thus it
rimarily excites the leaky mode. The delta—gap feed “sees”
th regions and, thus, excites both modes more equally.

already begun to lose physical meaning, as can be seen by

comparing the theoretical amplitude of the leaky mode and

IV. CONCLUSIONS

the amplitude of the second GPOF wave. At 2 GHz, close A quasi-analytical method for calculating the current on
to the spectral-gap boundary, there is no agreement betwges conducting strip of a multilayered stripline structure when

the theoretical leaky-mode amplitude and the second GP@kcited by a finite source has been presented. The formulation
wave amplitude, although there is still a somewhat reasonahlgs been presented for a VED in proximity to the strip
agreement between the propagation constants. Below 2 Gbiz,a delta—gap feed on the strip. This method constructs a
it is not even possible to determine which of the GPOF wavesimerical Green’s function for the current on the strip due to
matches with the leaky mode since there is no agreement attladl source by using a Fourier transform of the source excitation
in either amplitude or propagation constant. In this frequenty decompose it into a set of phased sources that are infinite in
range, the leaky mode has lost all physical meaning. the longitudinal direction. A Green'’s function for a line-source
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type of excitation (one-dimensional Green’s function) is then
used to calculate the solution due to each phased source. -Igl
numerical Green’s function is used to calculate the complete
current on the strip that is produced by the finite source and
also the current due to only the bound or leaky modes tHat!
are excited by the source. The currents of the bound and
leaky modes are conveniently calculated from the numerical
Green'’s function by taking the residue contribution from thE?
corresponding poles in the longitudinal wavenumber plane.
Since different paths of integration are possible for the cdf3l
culation of the one-dimensional Green’s functibnanch cuts 14,
appear in the longitudinal wavenumber plane of integration for
the calculation of the numerical Green's function. A carefult®]
examination of these branch cuts provides much insight into
the physical meaning of the leaky modes that are excitédl
on the structure. The physical meaning of a leaky mode is
defined here by the degree of correlation between the complgtg
current on the strip and that due to the leaky mode alone. It
is concluded that the “path consistency condition,” previously
introduced as a speculative condition for the physical meaning)
of a leaky mode is indeed a corramcessancondition for a
leaky mode to have well-established physical meaning. [19]
Numerical results are presented that compare the currents
of the bound and leaky modes with the complete current ﬂ)]
the strip. The GPOF method is used to help quantify this
comparison. It is established that a practical source may indeed
excite a leaky mode with an appreciable amplitude, and that el
physical meaning of a leaky mode does depend on the phase
constant of the mode. As the “spectral-gap” is approached
where the path consistency condition is violated, the Ieal@/2
mode begins to lose physical meaning.
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